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Abstract
Thermodynamic properties of charge-stabilized colloidal suspensions depend sensitively on the
effective charge of the macroions, which can be substantially lower than the bare charge in the
case of strong counterion–macroion association. A theory of charge renormalization is
proposed, combining an effective one-component model of charged colloids with a thermal
criterion for distinguishing between free and associated counterions. The theory predicts, with
minimal computational effort, osmotic pressures of deionized suspensions of highly charged
colloids in close agreement with large-scale simulations of the primitive model.

1. Introduction

Colloidal suspensions of charged macroions—nanometers to
micrometers in size and dispersed in a fluid by Brownian
motion—are ubiquitous in nature and industry [1, 2]. The
remarkable thermal, optical, and dynamical properties of
colloidal materials hinge on a delicate balance between
competing interparticle interactions [3]. Common examples
include aqueous paints, detergents, and clays: dispersions
of latex particles, ionic surfactant micelles, and mineral
platelets, respectively. Self-assembled crystals of synthetic,
monodisperse, silica or polystyrene microspheres provide
useful scaled-up models of atomic crystals and promise novel
technologies, such as photonic band-gap materials [4, 5]. As
predicted by the classic theory of Derjaguin, Landau, Verwey,
and Overbeek (DLVO) [6, 7], repulsive electrostatic forces
between charged colloids can stabilize a suspension against
aggregation induced by van der Waals attractive forces [8].

Dispersed in a polar solvent, colloidal particles can
acquire charge through dissociation of ionizable chemical
groups at the surface. Electrostatic interactions are sensitive
to the surface charges of the macroions and to the distribution
of surrounding counterions. A macroion’s bare (structural)
charge depends on its surface chemistry (e.g., number and
type of ionizable sites) and, in general, on the pH and
salinity of the solution [9, 10]. Dressed by an entourage of
strongly attracted counterions, a highly charged macroion can

act as though carrying a significantly reduced (renormalized)
effective charge.

The basic concepts of charge renormalization and effective
charge were first introduced and widely explored some four
decades ago in the context of polyelectrolyte solutions [11, 12].
Similar ideas were subsequently applied to colloidal sus-
pensions by Alexander et al [13], who demonstrated that
strong association of counterions can significantly renormalize
spherical macroion charges. Numerous experimental studies
of deionized aqueous suspensions of highly charged spherical
latex particles [14–17], integral-equation calculations [18], and
simulation studies of the primitive model [19–23] have since
confirmed the effective charge as a physically important pa-
rameter in the one-component model of colloidal suspensions.

The one-component model provides a practical approach
to overcoming the severe challenges of extreme size and
charge asymmetries in explicit molecular models of charge-
stabilized colloidal suspensions, polyelectrolyte solutions, and
many other soft materials [24]. The model is derived from the
multi-component ion mixture by averaging over the degrees
of freedom of the microions (counterions and salt ions).
The surviving ‘pseudo-macroions’ are governed by effective
electrostatic interactions, screened by the implicitly modeled
microions.

This paper seeks to unite the concepts of dressed
macroions and effective interactions in a coherent statistical
mechanical framework that describes the association of coun-
terions with macroions, the renormalization of the effective
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macroion charge, effective electrostatic interactions between
macroions, and thermodynamic properties of deionized sus-
pensions of highly charged colloids. Conceptually similar
syntheses have been proposed recently, based on Debye–
Hückel theory [25–29] and on nonlinear Poisson–Boltzmann
theory [30, 31]. The present theory is inspired by the
elegant liquid-state approaches of Levin, Trizac, and co-
workers [25–29], but differs in several significant practical
respects.

The remainder of the paper is organized as follows.
Sections 2 and 3 trace a path from the microscopic primitive
model of charged colloids to an effective one-component
model of dressed, charge-renormalized macroions. A
simple criterion is adopted to differentiate between free and
electrostatically bound counterions; physical approximations
are developed for the free energies of the two counterion
phases; and a variational method is prescribed for determining
the renormalized effective charge and screening constant.
Section 4 demonstrates the practical implementation of the
theory and compares predictions for the pressure of deionized
suspensions with corresponding data from both simulations of
the primitive model and experiment. Excellent agreement is
obtained, over broad ranges of system parameters, with trivial
computational effort. Finally, section 5 closes with a summary
and perspectives.

2. Model

Within the primitive model of charged colloids, the
macroions are modeled as negatively charged hard spheres of
monodisperse radius a and bare valence Z0 (charge −Z0e),
the microions as monovalent point charges, and the solvent
as a dielectric continuum of uniform relative permittivity ε.
Polarization effects and image charges are ignored, assuming
index-matching of macroions and solvent. The suspension
may be either entirely confined to a closed volume at fixed
salt concentration or in partial chemical (Donnan) equilibrium
(e.g., via a semi-permeable membrane) with a microion
reservoir, which fixes the microion chemical potentials. The
reservoir is presumed to be a 1:1 electrolyte solution with
number density n0 of monovalent salt ion pairs.

In the presence of a sufficiently strong attractive potential,
some fraction of counterions may remain closely associated
with the macroions. By analogy with Oosawa’s two-phase
theory of polyelectrolyte solutions [12], a distinction then can
be drawn between free and bound microion regions (‘phases’).
In contrast to rodlike polyelectrolytes, however, spherical
colloidal macroions do not generate a Coulomb potential of
sufficient range to overcome counterion entropy and condense
the counterions. As a result, associated counterions remain
only thermally (not physically or chemically) bound to the
macroions.

As figure 1 depicts, counterions localized within a
spherical shell of thickness δ (yet to be determined) are
regarded as renormalizing the bare macroion valence. Coions
are assumed to be completely expelled from the shell. The
resulting ‘dressed’ macroion is a composite object consisting
of a bare macroion and its shell of bound counterions with

Figure 1. Model of charged colloidal suspension: spherical
macroions of radius a and point microions dispersed in a dielectric
continuum. Strongly associated counterions in a spherical shell of
thickness δ renormalize the bare macroion valence Z0 to an effective
(lower) valence Z .

an effective valence Z � Z0. Although the bare and
effective valences are statistically fluctuating quantities, they
are represented for present purposes by their average values.

The boundary between free and bound counterions is
located at a distance from the macroion surface at which
the electrostatic energy of counterion–macroion attraction is
comparable to the average thermal energy per counterion.
Denoting by φ(r) the electrostatic potential at distance r from
a macroion center, the association shell is defined via

e|φ(a + δ)| = CkBT, (1)

where C is an adjustable, dimensionless parameter, evidently
of order unity. Counterions within the association shells (a <
r < a + δ) are assumed to be trapped in the potential wells of
the macroions, while more distant counterions have sufficient
kinetic (thermal) energy to escape. This simple criterion for δ
justifies a Debye–Hückel-like linear-screening approximation
for the free counterions, which is exploited in the theory
developed below.

Previous studies have applied a thermal criterion similar
to equation (1) to the electrostatic potential [32–34] or to
the effective pair potential [35]. Alternative approaches to
defining the association shell thickness are based on the
structure of the counterions around a macroion or on the
macroion configurations. Alexander et al [13], for example,
determined Z in a spherical cell model by matching the
solutions of the nonlinear and linearized PB equations for
the counterion density at the edge of the cell. The inflection
point in the running effective charge of the macroion has been
identified as another sensible boundary between free and bound
counterions [36]. Yet another fruitful approach is to fit the
effective one-component model (with a screened-Coulomb pair
potential) to either the static structure factor measured in light-
scattering experiments [14] or the pair distribution function
computed in simulations of the primitive model [19–23]. A
useful comparison of various criteria for defining effective
charges is provided in [34].
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3. Theory

The theory proposed here for charge renormalization and
thermodynamics of colloidal suspensions requires modeling
the electrostatic potential and the total free energy of the
system. For this purpose, the most popular framework
is the Poisson–Boltzmann (PB) theory [37], a mean-field
approach that is especially well-suited to suspensions with
monovalent microions, whose correlations usually can be
justifiably neglected. Combining the exact Poisson equation
for the potential with a Boltzmann approximation for the
microion density profiles (as functions of position r), n±(r) =
n0 exp[∓ψ(r)], the PB theory is based on the Poisson–
Boltzmann equation

∇2ψ = κ2
0 sinhψ, (2)

where ψ = βeφ is the reduced potential (vanishing in the
reservoir), β = 1/(kBT ) at temperature T , κ0 = √

8πλBn0 is
the Debye screening constant, and λB = βe2/ε is the Bjerrum
length. Equation (2) must be solved together with appropriate
boundary conditions: ∇ψ|r=a = Z0λB/a2 and ∇ψ = 0 either
as r → ∞—far from the macroions in a bulk suspension—
or at r = R in a symmetric cell of radius R. Neglecting
macroion–macroion correlations, and all but asymptotically
long-range microion–microion correlations, the corresponding
Helmholtz free energy takes the form

βF =
∑

i=±

∫
dr ni (r)[ln(ni(r)
3)− 1]+ 1

8πλB

∫
dr |∇ψ|2,

(3)
where
 is the microion thermal de Broglie wavelength and the
two terms on the right side represent, respectively, the ideal-gas
free energy due to microion entropy and the total electrostatic
energy.

At distances r for which |ψ(r)| � 1, the right side
of equation (2) may be approximated by an expansion about
the reservoir potential (ψ = 0) to linear order in ψ .
Anticipating applications to deionized suspensions of highly
charged colloids, however, the microion densities are here
expanded instead about the mean (Donnan) potential of the
suspension ψ̄ [38–40]:

∇2ψ = κ2
0 [sinh ψ̄ + cosh ψ̄(ψ − ψ̄)]. (4)

In a bulk suspension of macroions with bare valence Z0, the
solution of equation (4), with boundary condition ψ ′(r) → 0
as r → ∞, yields the potential generated by a single bare
macroion1:

ψ(r) = −Z0λB
eκa

1 + κa

e−κr

r
, r � a, (5)

with the bare screening constant

κ = κ0

√
cosh ψ̄ = √

4πλB(n+ + n−). (6)

1 In the PB cell model [38–40], the cell boundary conditions modify the form
of the electrostatic potential compared with equation (5).

Here n± = n0 exp(∓ψ̄) = N±/[V (1 − η)] represent the
mean number densities of microions in the free volume, i.e.,
the total volume V reduced by the fraction η occupied by
the macroion hard cores. Note that the screening constant κ
depends implicitly on the average density of macroions, since
the global constraint of electroneutrality relates the numbers
of macroions (Nm) and microions (N±) in the suspension via
Z0 Nm = N+ − N−. Combining the linearized PB equation
(equation (4)) with a quadratic expansion of the ideal-gas free
energy (equation (3)) about the mean microion densities yields
the corresponding linear-screening approximation for the one-
body part of the free energy per macroion:

β f =
∑

i=±
xi [ln(ni


3)−1]− Z 2
0

2

κλB

1 + κa
− Z 2

0

2

nm

n+ + n−
, (7)

where xi = Ni/Nm and the three terms on the right side
account for, respectively, the microion entropy, macroion self-
energy, and the Donnan potential energy of the microions.

The PB theory proves to be formally equivalent
to a class of effective-interaction theories that map the
macroion–microion mixture onto a one-component model
(OCM), by integrating over microion degrees of freedom
in the partition function, and that neglect all but long-
range microion correlations [24, 41]. The effective-
interaction approach has been variously formulated as
density-functional [42–46], extended Debye–Hückel [47],
distribution function [48, 49], and response [50–54] theories—
all fundamentally equivalent [24], aside from technical
differences in the incorporation of excluded-volume effects.
The OCM is governed by an effective Hamiltonian comprising
a one-body volume energy and summations over pair and, in
general, many-body effective interactions.

Linearizing the PB equation about the mean potential
(equation (4)), and the PB free energy about the mean microion
densities, is completely equivalent in the OCM to linearizing
the microion free energy about a reference system of neutral
macroions embedded in an electroneutral microion plasma [41]
and neglecting many-body effective interactions. Furthermore,
the volume energy in the OCM turns out to be identical to
the linearized PB free energy (equation (7)). A significant
advantage of the OCM, however, is its natural incorporation
of effective interactions between macroions. An additional
contribution to the total free energy then comes from the
effective (reduced) macroion–macroion pair potential [51, 52]

βveff(r) = Z 2
0λB

(
eκa

1 + κa

)2 e−κr

r
, r > 2a. (8)

Further progress requires uniting the OCM-based linear-
screening theory of charged colloids with the charge-
renormalization model of section 2. To this end, the total free
energy is first separated, according to

F = Ffree + Fbound + Fm, (9)

into contributions from free and bound microions and from
effective interactions between macroions, respectively. The
linear-screening theory is then applied only to the free
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microions, whose free energy per macroion is approximated
by (cf equation (7))

β ffree =
∑

i=±
x̃i [ln(ñi


3)− 1] − Z 2

2

κ̃λB

1 + κ̃(a + δ)

− Z 2

2

nm

ñ+ + ñ−
, (10)

where x̃± = Ñ±/Nm, Ñ± are the numbers of free microions,
ñ± = Ñ±/[V (1 − η̃)], and η̃ = η(1 + δ/a)3 is the effective
volume fraction of the dressed macroions. Generalizing
equation (5), the electrostatic potential around a dressed
macroion of effective valence Z and effective radius a + δ is
given by

ψ̃(r) = −ZλB
eκ̃(a+δ)

1 + κ̃(a + δ)

e−κ̃r

r
, r � a + δ, (11)

with a renormalized screening constant

κ̃ = √
4πλB(ñ+ + ñ−). (12)

The association shell thickness is now specified by combining
equations (1) and (11), yielding

ZλB

[1 + κ̃(a + δ)](a + δ)
= C, (13)

and solving self-consistently for δ (given Z ), noting that κ̃
depends implicitly on δ.

The free energy of the bound counterions decomposes
naturally into entropic and energetic contributions. The
first contribution is the ideal-gas free energy of the bound
counterions, given exactly by

βFid = 4πNm

∫ a+δ

a
dr r 2nb(r)

[
ln

(
nb(r)


3
) − 1

]
, (14)

where nb(r) is the number density profile of bound counterions
within the association shell and the integral covers the volume
of the shell from inner radius a to outer radius a + δ. Although
nb(r) could be obtained by solving the nonlinear PB equation
(equation (2)) (as in [31]), the present study explores a simpler
approximation, ln(nb(r)
3) 	 ln(nb


3), which yields

βFid 	 Nm(Z0 − Z)
[
ln

(
nb


3
) − 1

]
, (15)

where nb = (Z0 − Z)/vs is the mean density of bound
counterions in the association shell of volume vs =
(4π/3)[(a + δ)3 − a3]. The second contribution to the bound-
counterion free energy is the electrostatic energy Fel required
to assemble the total charge of the dressed macroions—bare
and bound charge—from infinity. An exact calculation would
again require knowledge of the bound-counterion density
profile. Here we simply assume nb(r) to be sharply peaked
near r = a and take

βFel 	 Nm
Z 2λB

2a
. (16)

In the case of macroion charges below the renormalization
threshold, Z = Z0 and Fel is a trivial constant that is irrelevant

for thermodynamics. At charges high enough that Z < Z0,
however, Fel becomes significant, since Z is state dependent
(as seen below). Combining equations (15) and (16), the
bound-counterion free energy per macroion is here simply
approximated by

β fbound 	 (Z0 − Z)

[
ln

(
Z0 − Z

vs

3

)
− 1

]
+ Z 2λB

2a
. (17)

For a given bare valence Z0, the effective valence Z
is prescribed by minimizing with respect to Z the total
microion free energy (sum of equations (10) and (17)) at fixed
temperature and mean microion densities:

(
∂

∂Z
( ffree + fbound)

)

T,n±
= 0. (18)

The same variational prescription has been adopted by Levin
et al [25–27]. It is easily shown that the minimization condition
is equivalent to equating the chemical potentials of counterions
in the free and bound phases, under the constraint that Z and
δ are related by equation (13). The effective valence and
corresponding shell thickness in turn determine the effective
screening constant κ̃ via equation (12).

Once the effective valence and screening constant are
determined, the effective pair potential between dressed
macroions follows as

βṽeff(r) = Z 2λB

(
eκ̃a

1 + κ̃a

)2
e−κ̃r

r
, r > 2(a + δ),

(19)
from which the macroion free energy Fm can be computed
via liquid-state theory or computer simulation. (Note that
the macroion radius is not renormalized in the prefactor
of the effective pair potential in equation (19), since the
association shells are penetrable.) For demonstration purposes,
we implement a variational method [42, 54] based on first-
order thermodynamic perturbation theory with a hard-sphere
reference system [55]. The macroion free energy per macroion
is thus approximated as

fm(nm, ñ±) = min
(d)

{
fHS(nm, ñ±; d)

+ 2πnm

∫ ∞

d
dr r 2gHS(r, nm; d)ṽeff(r, nm, ñ±)

}
, (20)

where the effective hard-sphere diameter d is the variational
parameter and fHS and gHS are the excess free energy density
and (radial) pair distribution function, respectively, of the HS
fluid, computed here from the near-exact Carnahan–Starling
and Verlet–Weis expressions [55]. Minimization of fm with
respect to d generates a least upper bound to the free energy.
It is important, in practice, to fix the renormalized system
parameters (Z , δ, κ̃) in this minimization and in all partial
thermodynamic derivatives.

The thermodynamic pressure finally can be calculated
from

p = n2
m

(
∂ f

∂nm

)

T,Ns/Nm

= pfree + pm, (21)
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Figure 2. Effective valence Z versus bare valence Z0 for a
deionized suspension (cs 	 0) of macroions of radius a = 50 nm and
volume fraction η = 0.1. Inset: counterion association shell emerges
and thickens beyond threshold Z0.

where f = F/Nm is the total Helmholtz free energy per
macroion, Ns = N− is the number of salt ion pairs in the
suspension,

βpfree = ñ+ + ñ− − Z(ñ+ − ñ−)κ̃λB

4[1 + κ̃(a + δ)]2
(22)

is the (reduced) pressure generated by the free microions, and

βpm = nm + n2
mβ

(
∂ fm

∂nm

)

T,Ns/Nm

(23)

is the macroion pressure due to macroion entropy and effective
pair interactions. Note that, since Z and δ are implicitly held
fixed in the partial derivatives, the bound counterions make no
contribution to the pressure. As an alternative to variational
theory, computer simulation also can be used to determine the
macroion pressure [56].

4. Results and discussion

To demonstrate its implementation, the charge renormalization
theory is now applied to deionized suspensions of charged
colloids and monovalent microions in an aqueous solvent at
room temperature (λB = 0.72 nm). As noted in section 3,
the theory involves a single free parameter, namely the
dimensionless parameter C in equation (18), which establishes
the threshold for charge renormalization. To ensure that
a counterion’s average thermal energy does not exceed its
binding potential, C must be O(1). Lacking an independent,
physical criterion, C must be regarded for the present as a
fitting parameter. All results presented below were computed
for C = 3, a value found to give satisfactory overall agreement
with thermodynamic and structural data from primitive model
simulations. In passing, we note that the thermal parameter C
in the present theory is somewhat analogous to the adjustable
cell radius parameter b in [31], which combines PB cell and
linear-screening theories.

The key physical concepts of the charge-renormalization
theory are illustrated in figures 2–4. For a sufficiently
small bare valence, equation (13) admits no real solution

Figure 3. Effective valence Z versus volume fraction η for a
deionized suspension of macroions of radius a = 50 nm and bare
valence Z0 = 104. Inset: association shell (solid curve) thins with
increasing η, remaining thinner than nearest-neighbor surface
separation in fcc crystal (dashed curve).

Figure 4. Effective valence Z versus system salt concentration cs for
macroions of radius a = 50 nm, bare valence Z0 = 104, and volume
fraction η = 0.1. Inset: association shell thins with increasing salt
concentration.

for nonzero thickness of the association shell. In this case,
there are no bound counterions (δ = 0, vs = 0) and
the free energy is minimized by Z = Z0 (dashed line in
figure 2). At a threshold value of the bare valence, however,
the shell emerges continuously and thickens rapidly with
increasing Z0 at fixed volume fraction and salt concentration
(inset to figure 2), while the free energy minimum shifts to
Z < Z0 (solid curve in figure 2). The effective valence
does not saturate, but continues to grow logarithmically
with increasing Z0, in contrast to the behavior expected
and observed for polyelectrolytes [12] and to predictions for
colloidal suspensions from PB cell-based theories [13, 30, 36]
and Debye–Hückel-based theories [25–29].

As figures 3 and 4 show, Z varies with volume fraction
η and salt concentration cs of the suspension. The effective
valence thus depends nontrivially on the thermodynamic
state, exhibiting a pronounced minimum with respect to η

and increasing monotonically with cs. Correspondingly, the

5



J. Phys.: Condens. Matter 20 (2008) 494230 A R Denton

Figure 5. (a) Total reduced pressure βp/ntot versus macroion
volume fraction η, where ntot = (Z0 + 1)nm (total ion density), of
salt-free suspensions with bare macroion valence Z0 = 40 and
electrostatic coupling constants (top to bottom)  = 0.0222, 0.0445,
0.0889, 0.1779, 0.3558, 0.7115. Symbols: Monte Carlo simulations
of the primitive model [21] (symbol sizes exceed error bars). Curves:
variational theory with (solid) and without (dashed) charge
renormalization. The double-ended arrow points to corresponding
curves for  = 0.3558. The dashed curve for  = 0.7115 is
off-scale, the pressure being negative. (b) Corresponding ratio of
effective to bare macroion valence Z/Z0 versus η for  = 0.1779,
0.3558, 0.7115 (top to bottom). For  � 0.1, no renormalization is
predicted (Z = Z0).

association shell thins with increasing η and cs (figures 3
and 4, insets), in such a manner, however, that the shells
surrounding neighboring macroions always remain separate
and distinct. The absence of overlapping shells provides an
internal consistency check on the theory.

To test predictions of the theory for thermodynamic
properties, the pressures of deionized suspensions, calculated
from equations (12), (13), and (21)–(23), are directly compared
with available data from simulations of the primitive model.
Figures 5 and 6 show comparisons with the results of
Linse [21] from extensive Monte Carlo simulations of salt-
free suspensions with various bare valences and electrostatic
coupling parameters  = λB/a. The unrenormalized linear-
screening theory [51, 52] performs excellently for low-to-
moderate couplings ( < 0.1779 for Z0 = 40 in figure 5),
but breaks down at higher couplings, characteristic of highly
charged latex particles and ionic surfactant micelles. As
illustrated in figures 5(b) and 6 (inset), charge renormalization
becomes important for Z0 > 7, where the effective valence

0.01 0.1 1

0.5

1

Figure 6. Total reduced pressure βp/ntot versus electrostatic
coupling constant  of salt-free suspensions with fixed volume
fraction η = 0.01 and bare macroion valence (top to bottom)
Z0 = 10, 20, 40, 80. Symbols: Monte Carlo simulations of the
primitive model [21] (symbol sizes exceed error bars). Curves:
charge-renormalized variational theory. Inset: ratio of effective to
bare macroion valence Z/Z0 versus .

Figure 7. Osmotic pressure (in Pa units) versus volume fraction η
for a deionized suspension (cs = 0) of charged macroions of radius
a = 51 nm and bare valence Z0 = 3000. Curve:
charge-renormalization theory; symbols: experimental data [57].
Inset: effective valence Z versus η.

tends to be lower than the bare valence. The renormalized
theory restores close agreement with simulation up to at
least Z0 	 28 ( = 0.7115 in figure 5). In practice,
the excluded-volume correction to the microion densities
in equation (10), and the inclusion of the effective pair
pressure—already important features of the unrenormalized
theory [56]—are essential for consistent quantitative accuracy
as the volume fraction becomes renormalized. Remarkably
and intriguingly, the threshold for charge renormalization
coincides with the onset of a spinodal phase instability, at low
but nonzero salt concentrations, predicted by linear-screening
theories [42, 44, 47, 54]. This rather unusual prediction,
however, has not yet been confirmed by primitive model
simulations and the experimental situation is unresolved.

Finally, the theory also can be tested against available
experimental data. Figure 7 shows a comparison of predictions
with osmotic pressure measurements of deionized, aqueous,
charged colloidal crystals reported by Reus et al [57].
Since bare (titratable) charges are notoriously difficult to
characterize in experiments, Z0 is treated here as a fitting

6
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parameter, a value of Z0 	 3000 giving a reasonable fit
to the data. As seen in the inset to figure 7, the effective
charge in this case is substantially lower than the bare
charge. It is important to emphasize, however, that only
thermodynamic quantities have physical significance within
the theory and that the theoretically defined variable Z does not
necessarily correspond directly with any effective charge that
may be determined experimentally, e.g., by light-scattering,
electrophoresis, or conductivity measurements. Moreover,
direct comparisons between theory and experiment are subject
to complication by charge regulation via chemical reactions
at the macroion surface [9, 10], which may render even the
bare charge dependent on thermodynamic state, e.g., pH and
salinity.

5. Conclusions

In summary, a new theory of charge renormalization in
charge-stabilized colloidal suspensions has been developed and
implemented. The theory posits the existence of free and
bound-counterion phases and integrates a thermal criterion
for distinguishing between the two phases with an effective-
interaction theory based on a one-component model. Within
the theory, bound counterions act to renormalize the effective
valence of the dressed macroions, while free counterions
screen the dressed macroions and make the dominant
contribution to the pressure. A linear-screening approximation
accurately describes monovalent free counterions, while
the bound counterions are adequately described by a
comparatively crude coarse-grained approximation for the
bound-counterion density profile.

Despite the conceptual and practical simplicity of the
charge-renormalization theory, predictions for the pressure
closely agree with corresponding data from both primitive
model simulations and an experiment, over ranges of
macroion charges, volume fractions, and electrostatic coupling
strengths, demonstrating the practical potential of the theory
for modeling equilibrium thermodynamic properties. A
preliminary simulation study [58] indicates that the theory also
can accurately model structural properties, such as macroion–
macroion pair distribution functions, although within a more
limited range of electrostatic couplings. Future work will
focus on refinements of the theory, further comparisons
with experiment, and applications to the phase behavior of
deionized suspensions of highly charged macroions in bulk and
in confinement [59–61]2.
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